Factor completely. Do Not Solve!

1.
$$x^4 - 5x^2 + 6$$

2.
$$x^4 + 7x^2 + 12$$

3.
$$3x^4 - 75x^2$$
 Is there a GCF?

4.
$$-2x^4 + 8x^2$$
 Is there a GCF?

5.
$$x^5 - 10x^3 + 16x$$
 Is there a GCF?

$$6. \ x^3 + 4x^2 + 9x + 36$$

6. $x^3 + 4x^2 + 9x + 36$ How do you factor when there are 4 terms?

SOLVE the following polynomial equation by factoring.

7.
$$3x(x+4)(x^2-7)=0$$

*already in factored form...just solve!

8.
$$x^4 - 4x^2 = 0$$

9.
$$x^4 - 6x^2 + 9 = 0$$

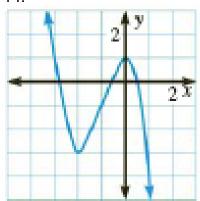
10.
$$x^4 - 25 = 0$$

11. $x^4 + 3x^2 = 28$... Set this one =0!

12. $3x^4 - 4x^2 - 7 = 0$... Use the box method!

13. $x^3 + 5x^2 + 6x = 0$ Is there a GCF?

14. Given $y = x^3 + 5x^2 + 6x$


What is the degree?_____

What is the name of the equation? Circle one: Linear quadratic cubic Quartic Quintic

What is the max number of turning points? ___

Determine the <u>zeros</u> and the <u>least degree</u> that the polynomial function can have. Then estimate the coordinate of each turning point and state whether it is a <u>local minimum</u> or <u>local maximum</u>.

14.

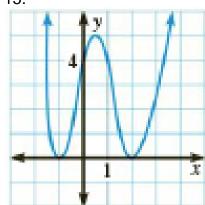
Roots: Degree=

Turning

Point/type:_____

Turning

Point/type:_____


Right Side Behavior

As $x \to \infty$, $y \to$ _____

Left Side Behavior

As $x \to -\infty$, $y \to \underline{\hspace{1cm}}$

15.

Roots: Degree=____

Turning Point/type:_____

Turning Point/type:_____

Turning Point/type:_____

Right Side Behavior

As $x \to \infty$, $y \to$ _____

Left Side Behavior

As $x \to -\infty$, $y \to$ _____